The No-Till Show and Conference, Groundswell, Weston Park Farms, Hitchin, Hertfordshire, UK, 30 June 2016

The No-Till Revolution: A Worldwide Phenomenon

Amir Kassam

Moderator
Global Conservation Agriculture Community of Practice (CA-CoP)

Outline

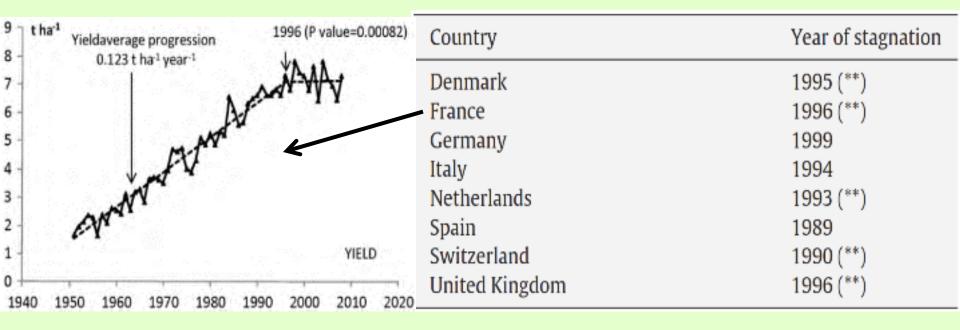
Why the need for a worldwide No-Till revolution?

 What does No-Till revolution offer in terms of mobilizing greater crop and land potentials?

What is the scale and geography of No-Till revolution

Conventional land preparation regular tillage, clean seedbed, exposed

Effects:


- Loss of organic matter
- Loss of pores, structure $\rightarrow \rightarrow$ soil compaction
- Destruction of biological life & processes

Stagnating Yields (yield gap)

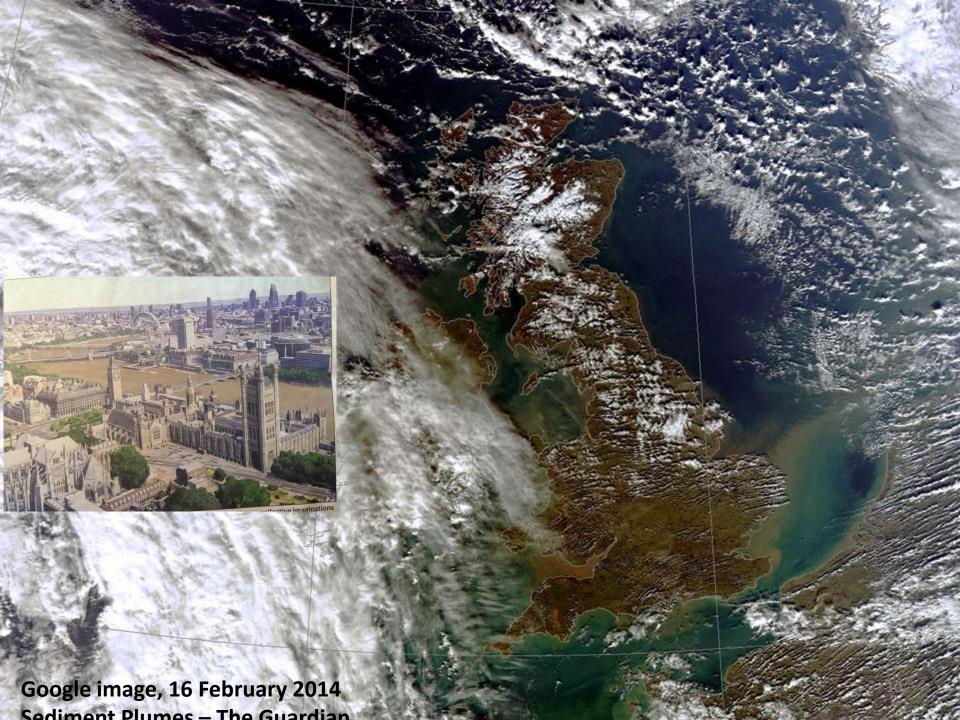
Rising-plateau regression analysis of wheat yields throughout various European countries

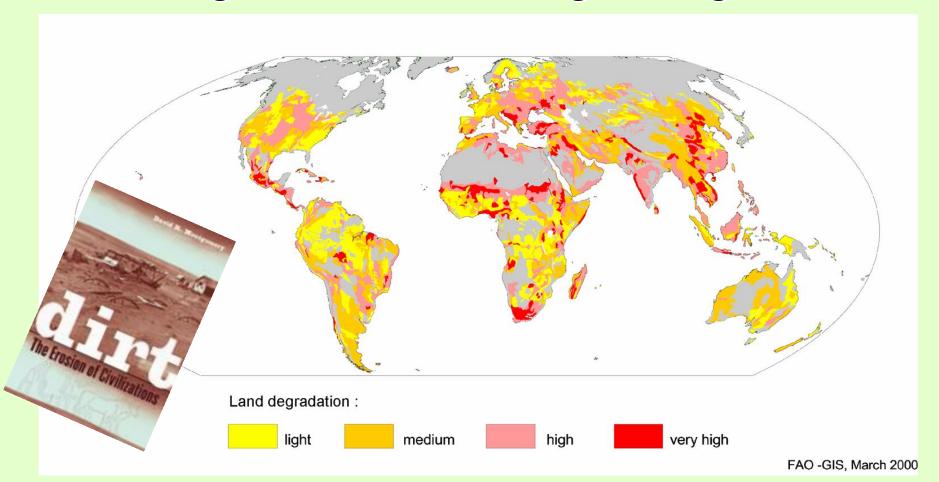
(Brisson et al. 2010)

But inputs and input costs going up, diminishing returns setting in,

Water infiltration, just after a thunderstorm

Runoff and soil erosion


TILLAGE AGRICULTURE -- Erosion



Degradation of soil, water and biodiversity resources

All agricultural soils show signs of degradation

World map of severity of land degradation – GLASOD (FAO 2000)
Also, the Millennium Ecosystem Assessment 2005 – 89% our ecosystems
Degraded or severely degraded, only 11% in reasonable shape. 400-500 M halost

Consequences of tillage-based agriculture at any level of development

FOR THE CROP (AND SOCIETY)

- Higher production costs, lower farm productivity and profit, sub-optimal yield ceilings, poor resilience
- less use efficiency of mineral fertilizer: "The crops have become 'addicted' to fertilizers"
- loss of (agro)biodiversity in the ecosystem, below & above soil surface
- more pest problems (breakdown of food-webs for microorganisms and natural pest control)
- falling input efficiency & factor productivities, declining or stagnating yields
- reduced resilience, reduced sustainability
- Poor adaptability to climate change & mitigation

Consequences of tillage-based agriculture at any level of development

FOR THE LAND (AND SOCIETY)

- Dysfunctional ecosystems, loss of biodiversity, degraded ecosystem services -- water, carbon, nutrient cycles, suboptimal water provisioning & regulatory water services etc. Low livestock and human carrying capacity.
- loss of OM, porosity, aeration, biota (=decline in soil health -> collapse of soil structure -> compaction & surface sealing -> decrease in infiltration)
- water loss as runoff & soil loss as sediment
- loss of time, energy, seeds, fertilizer, pesticide (erosion, leaching)
- less capacity to capture and slow release water & nutrients

Switching to sustainable solutions

What does No-Till revolution offer in terms of greater crop and land potentials?

Technical objectives of SPI

- Agricultural land productivity
- Natural capital and flow of ecosystems services

Simultaneously

- Enhanced input-use efficiency
- Build farming system resilience (biotic and abiotic), including being climate-smart
- Contribute to multiple-outcome objectives at farm, community & landscape, and national scales e.g. climate change mitigation

And

 Capable of rehabilitating land productivity and ecosystem services in degraded and abandoned lands

These objectives can be and are being met with No-Till CA

Conservation Agriculture

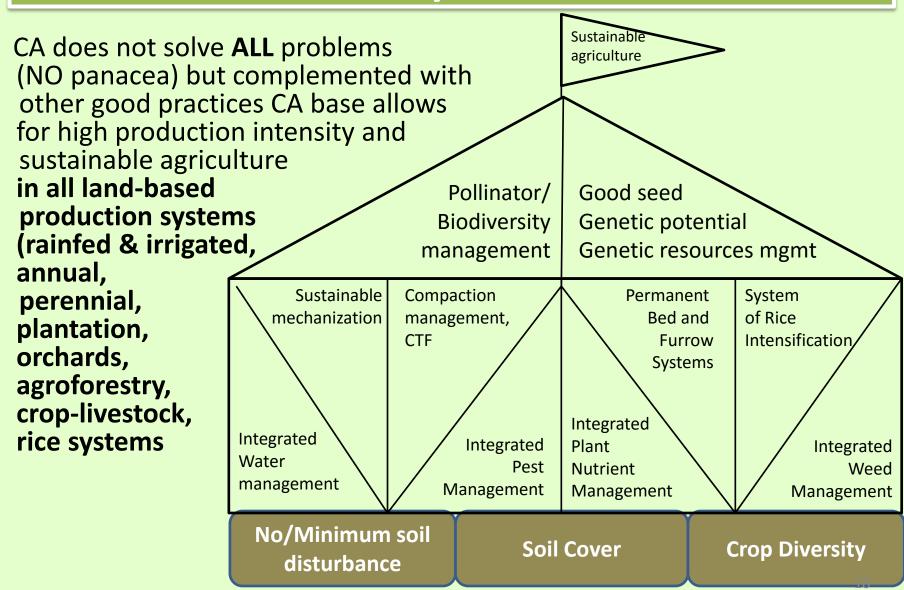
adoption of

FAO Definition: www.fao.org/ag/ca

Conservation Agriculture (CA)
is an approach to managing agro-ecosystems
for improved and sustained productivity,
increased profits and food security while
preserving and enhancing the resource base
and the environment. CA is characterized

by three linked principles, namely:

- 1. Continuous no or minimum mechanical soil disturbance.
- 2. Permanent soil mulch cover crop residues, cover crops.
- 3. Diversification of crop species grown in sequences or associations or rotations.


Along with other GAPs → SPI & CSA

No-Till CA works because

it pays attention to:

- the ecological foundation of production system
- Soil health and biology
- Biodiversity
- Ecosystem services

CA principles operate as ecological foundation to CA Systems

Pays attention to soil health -- soil as a 'complex' biological system, not just as a geological entity

Soil productive capacity (vs. fertility) is derived from several components which interact dynamically in space and time:

- Physical: architecture pore structure, space & aeration
- Hydrological: moisture storage infiltration
- Chemical: nutrients, CEC, dynamics
- Biological: soil life & non living fractions
- Thermal: rates of biochemical processes
- Gravity: retention & flows of liquids
- Cropping system: rotation/association/seq

A productive soil is a living system and its health & productivity depends on managing it as a 'complex' biological system, not as a geological entity.

Pays attention to biodiversity

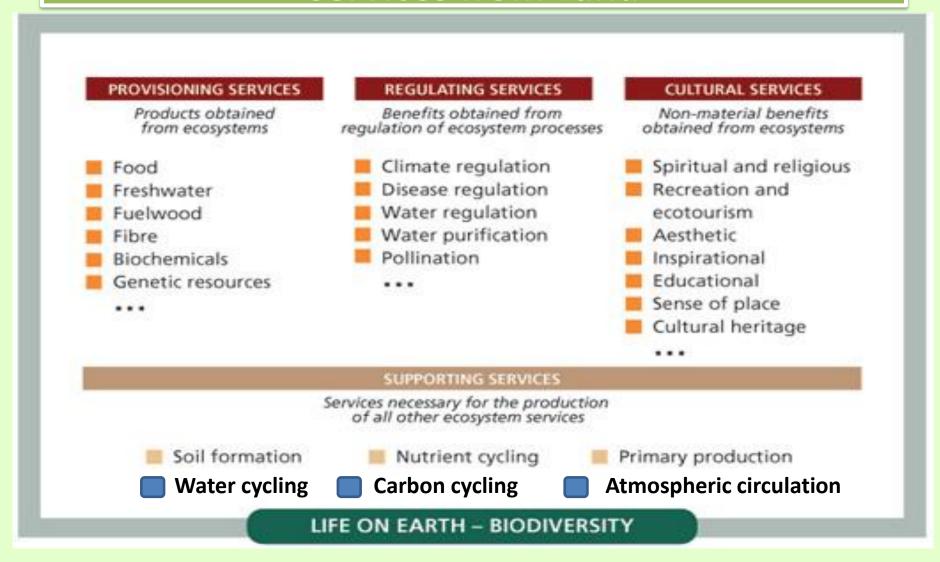
il food ebs...

-evolved anticrobiome lations

ove ground od webs & bitates for tural emies of sts

st-predator namics

ound-nesting rds, animals d insects



Pays attention to eco-agriculture landscapes: harmonizing multiple objectives at farm, community, landscape scales

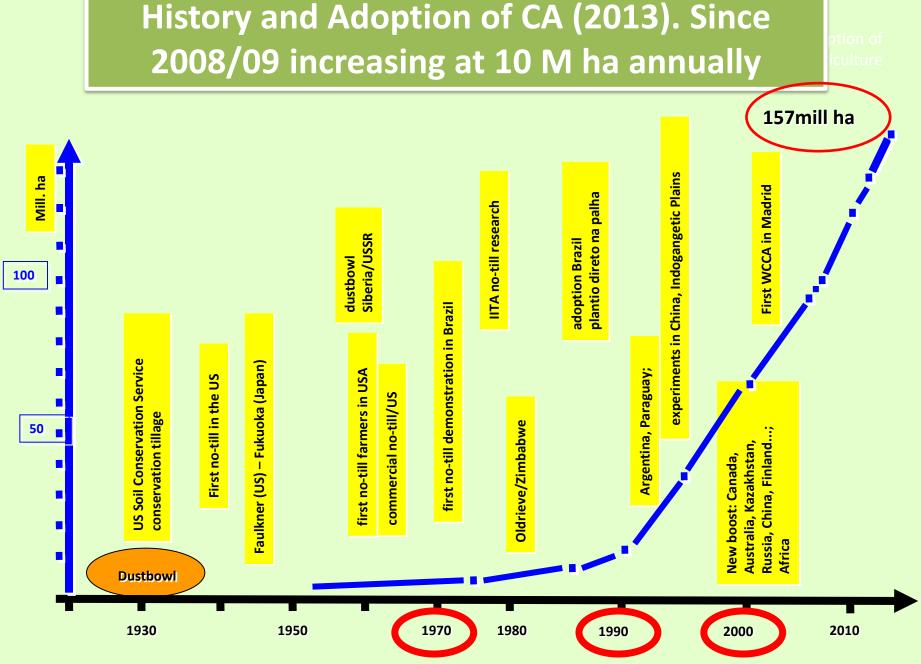
International Conference and Knowledge Exchange

Pays attention to harnessing ecosystem services from Land

Source: The Millennium Ecosystem Assessment (2005)

Sustainable Land Preparation - smallholders

Planting holes, ripping or mulching, direct drill



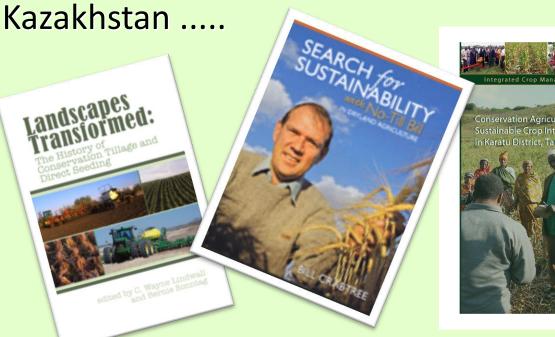
Scale and Geography of No-Till Revolution

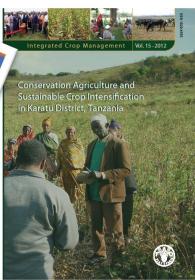
With evidence of superior performance of crop and land productivity in the tropics, subtropics and temperate regions

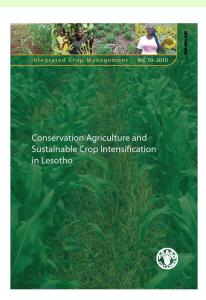
Area of cropland under CA by continent - 2013

(source: FAO AquaStat: www.fao/ag/ca/6c.html)

Continent	Area (Mill. ha)	Per cent of global total	Per cent of arable land of reporting countries
South America	66.0 (49.6)*	41.3 (34)#	60.0
North America	54.0 (40.0)	34.8 (40)	24.0
Australia & NZ	17.9 (12.2)	11.5 (47)	35.9+
Asia	10.3 (2.6)	6.6 (291)	3.0
Russia & Ukraine	5.2 (0.1)	3.4(5000)	3.3
Europe	2.1 (1.6)	1.4 (31)	2.8
Africa	1.2 (0.5)	0.8 (140)	0.9
Global total	157 (106)* ()* 2008/9	100 (48)# ()# % change since 2008/09	10.9 (7.4)* %global cropland + includes non- cropland


Conservation Agriculture globally 157 Million ha (2013) (~11% of annual cropland)




Documented benefits of CA for food security, environment, sustainability, rehabilitation

Small scale -- Paraguay, Tanzania, India, China, Lesotho, Zimbabwe, Zambia, Mozambique

Large scale – Canada, USA, Brazil, Australia, Argentina,

Drivers for adoption of CA

on Agriculture

- **Erosion:** North America, Brazil, China
- Drought: China, Australia, Kazakhstan, Zambia
- Cost of production: global
- Soil degradation: global
- Ecosystem services: global
- Climate change A&M: global
- Sustainable intensification: global
- **Pro-poor:** developing regions

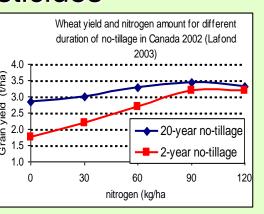
Spread is farmer-led but needs policy & institutional support, specially for smallholders

Challenges/issues/considerations of transformation and transition

- Weeds/herbicides
- Labour
- Larger farms
- Livestock
- Community engagement
- Temperate areas
- Farmers working together
- Equipment and machinery
- Knowledge and technical capacity
- Risk involved in transforming to no-till systems
- Approaches to adoption and scaling
- Policy and institutional support private, public, civil society

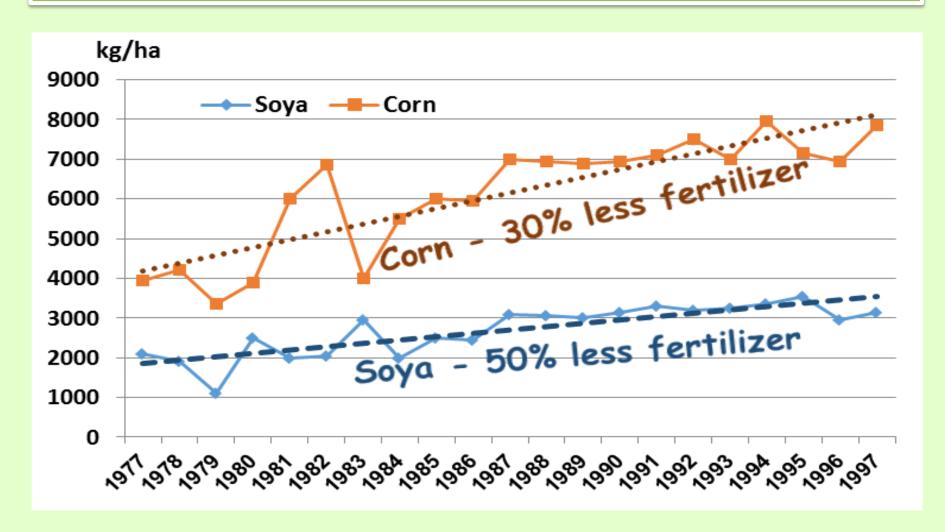
Patterns of benefits and evidence of superior performance with Conservation Agriculture

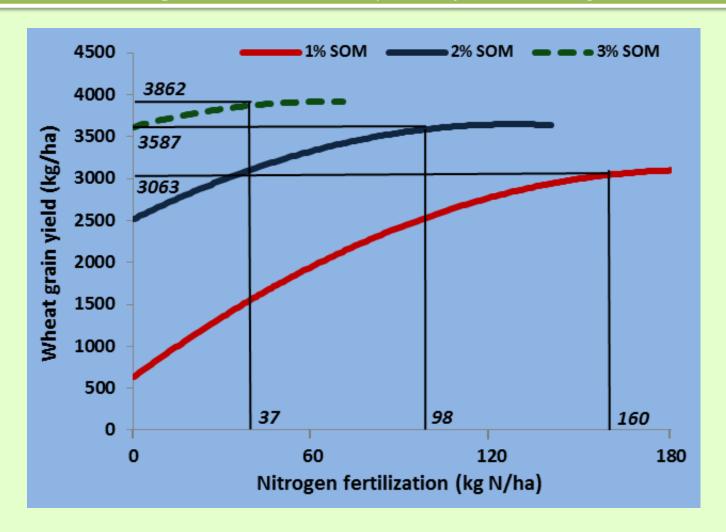
Impact pattern with CA – small or big farms


CROP

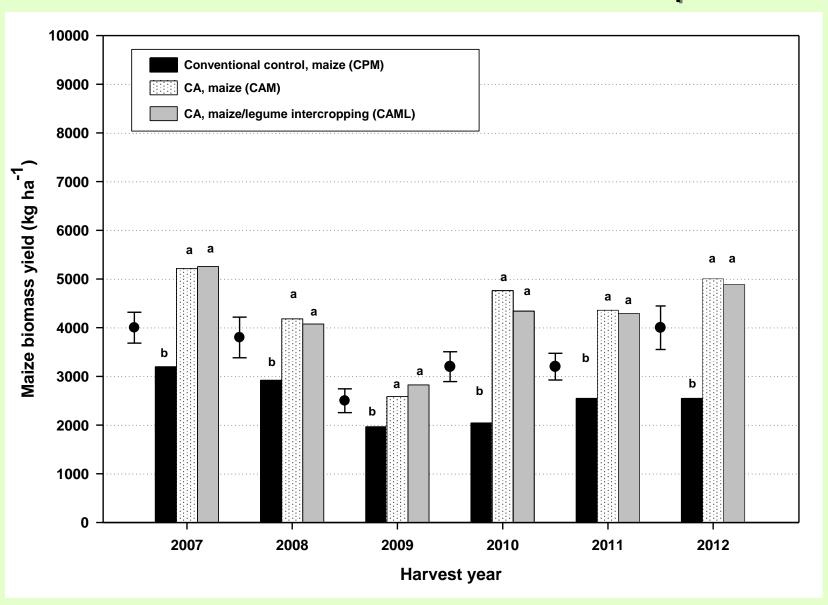
- Increased & stable yields, productivity, profit (depending on level and degradation)
- Less fertilizer use (-50%) no fertilizer less pesticides (-20->50%) no pesticides
- Less machinery, energy & labour cost (50-70%)
- water needs (-30-40%)

LAND

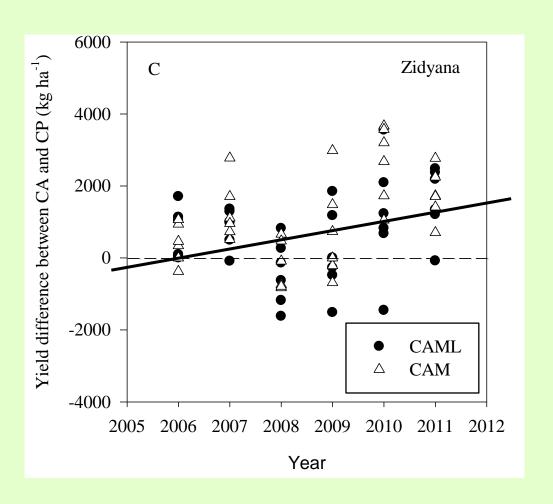

- Greater livestock and human carrying capacity
- Lower impact of climate (drought, floods, heat, cold) & climate change adaptation & mitigation
- Lower environmental cost (water, infrastructure)
- Rehabilitation of degraded lands & ecosystem services



Empirical evidence: The Frank Dijkstra farm in Ponta Grossa, Brazil - Sub-humid tropics



Wheat yield response to nitrogen fertilization (--- according to the model) - Dry sub-tropics WR



Carvalho et al., 2012

Longer term maize grain yields on farmers fields in Malawi – Lemu – Semi-arid tropics

Longer term maize grain yields on farmers fields in Malawi - Zidyana

CIMMYT- Thierfelder et al.

Economic viability-Malawi

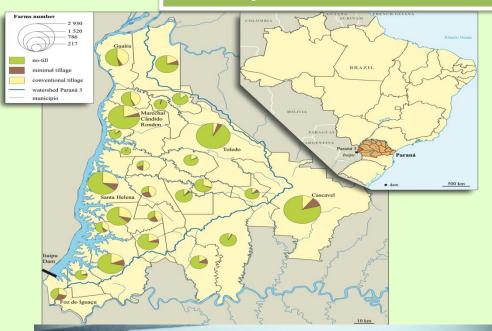
	Lemu			Zidyana	-	_
	CP	CA	CAL	CP	CA	CAL
Gross Receipts	528.6	881.5	979.7	1047.2	1309.5	1293.7
Variable costs						
Inputs	238.5	341.0	353.6	221.7	323.7	346.1
Labour days (6 hr days)	61.7	39.9	49.4	61.7	39.9	49.4
Labour costs	159.5	103.2	127.9	155.6	100.7	124.7
Sprayer costs		1.7	1.2		1.7	1.2
Total variable costs	398.1	445.9	482.8	377.3	426.1	472.1
Net returns (US\$/ha)	130.5	435.5	497.1	669.9	883.3	821.9
Returns to labour (US\$/day)	1.8	5.2	4.9	5.4	9.8	7.6

Source: Ngwira et al., 2012

SUMMARY OF ANNUAL EXPENSES

	CONVENTIONAL TILLAGE	DIRECT DRILLING	REDUC- TION
	(Year 2000)	(Year 2003)	(%)
Maintenance and repair of tractors	10 450,47 €	1 507,15 €	85
Maintenance and repair of tillage/drilling implements	8 158,41 €	1 840,40 €	77,5
Fuel	17 460 €	7 110 €	60
Labour	25 000 €	15 000 €	40
TOTAL ANUAL	<u>61 068,88 €</u>	18 347,55 €	<u>70</u>

Farm power – 4 tractors with 384 HP under tillage & 2 tractors with 143 HP under no-till Farm near Evora, South Portugal


Example 1-- Canada: Carbon offset scheme in Alberta

Sequestering soil Carbon with CA and trading offsets with regulated companies to offset their emissions by purchasing verified tonnes

(from ag and non-ag sectors)
Source: Tom Goddard et al.

Example 2 -- Watershed services in Parana Basin, Brazil

Water resources are threatened by conventional tillage agricultural practices. Conservation Agriculture is an alternative to reduce impacts on river's quality and to maintain a higher level of productivity and sustainability.

Cultivating Good Water Programme

Broad conclusions

 CA can sustainably mobilize greater crop and land potentials with increased efficiency and resilience.

 CA offers greater output and profit to smallholders and large farmers, with less resources and minimum land degradation.

 CA is increasingly seen as a real alternative for SPI and ES, and it is spreading at an annual rate of 10 M ha.

And, the messages, once understood, even make people dance!

More information: amirkassam786@googlemail.com

http://www.fao.org/ag/ca

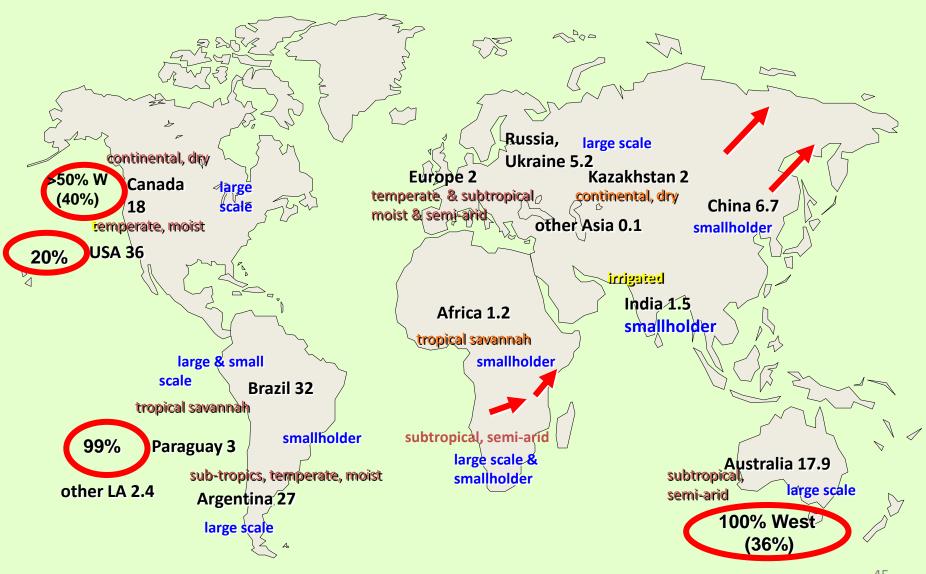
Join CA-CoP

The Supply Side – what does it look like?

Latest FAO projections for 2050 – 50-70% increase globally = 0.9% increase annually

Year	Population (billion)	Cereal output (mil. t)	Net Production Area (mil. Ha)	Yield (t/ha)
2014	7.2	2,532 (352 kg pc)	715	3.54
2050	9.2	3,280 (356 kg pc)	763	4.30 (3.44)#
Plateau (2100+)	10.0~	5,000* (500 kg pc)	763^ or 1000^	6.55 (5.24)# 5.00 (4.00)#

^{*} at 500 kg/capita which is the current Western European level of cereal use (including wastage) # with 50% cut in food waste

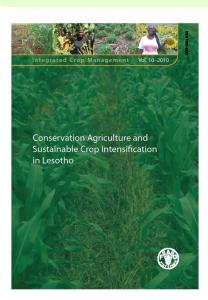

Potential suitable land is 4,495 M ha, currently used is 1,559 M ha. Marginal land is 2,738 M ha, which includes some 400-500 M ha of abandoned land due to degradation (Gibbs and Salmon, 2015).

If we decide to eat less meat in the future, then the required area and yields can be lower. There is also the biofuel question which will push the area up.

44

[^] Cereal: non-cereal ratio is ~50:50; so total arable land requirement would be 2,000 Ml ha assuming some expansion in cropland or could be 1,470 M ha assuming no expansion beyond 2050. In addition, we need land for permanent crops which could mean another 500 M ha. So the total land required to meet future demand would be somewhere between 2000 and 2,500 M ha.


Conservation Agriculture globally 157 Million ha (2013) (~11% of annual cropland)



Documented benefits of CA for food security, environment, sustainability, rehabilitation

Small scale -- Paraguay, Tanzania, India, China, Lesotho, Zimbabwe

Large scale – Canada, USA, Brazil, Australia, Argentina,

Drivers for adoption of CA

on Agriculture

- **Erosion:** North America, Brazil, China
- Drought: China, Australia, Kazakhstan, Zambia
- Cost of production: global
- Soil degradation: global
- Ecosystem services: global
- Climate change A&M: global
- Sustainable intensification: global
- **Pro-poor:** developing regions

Spread is farmer-led but needs policy & institutional support, specially for smallholders

Challenges/issues/considerations of transformation and transition

- Weeds/herbicides
- Labour
- Larger farms
- Livestock
- Community engagement
- Temperate areas
- Farmers working together
- Equipment and machinery
- Knowledge and technical capacity
- Risk involved in transforming to no-till systems
- Approaches to adoption and scaling
- Policy and institutional support private, public, civil society